MATH 5061 Solution to Problem Set 3^{11}

1. Suppose that $\left(M^{n}, g\right)$ is a connected Riemannian manifold with $n \geq 3$ such that there exists a function $f: M \rightarrow \mathbb{R}$ such that $K(\sigma)=f(p)$ for all two-dimensional subspace $\sigma \subset T_{p} M$. Show that f must be a constant function on M.(Hint: use the second Bianchi identity)

Solution:

Recall the corollary in the lecture. It says sectional curvature $K(\sigma) \equiv c$ for all $\sigma \in T_{p} M$ if and only if $R(X, Y, Z, W)=c(\langle X, Z\rangle\langle Y, W\rangle-\langle Y, Z\rangle\langle X, W\rangle)$. So we have

$$
R_{p}(X, Y, Z, W)=f(p)(\langle X, Z\rangle\langle Y, W\rangle-\langle Y, Z\rangle\langle X, W\rangle)
$$

Again, we can work at normal coordinate. Let e_{1}, \cdots, e_{n} to be the normal coordinate at p. Use the properties $\frac{\partial}{\partial x^{i}}\left\langle e_{j}, e_{k}\right\rangle=0$ at p for any $1 \leq i, j, k \leq n$,
we have

$$
\begin{aligned}
\left(\nabla_{e_{i}} R\right)\left(e_{j}, e_{k}, e_{l}, e_{m}\right) & =\frac{\partial}{\partial x^{i}}\left(f(p)\left(\left\langle e_{j}, e_{l}\right\rangle\left\langle e_{k}, e_{m}\right\rangle-\left\langle e_{j}, e_{m}\right\rangle\left\langle e_{k}, e_{l}\right\rangle\right)\right) \\
& =\frac{\partial f}{\partial x^{i}}(p)\left(\delta_{j l} \delta_{k m}-\delta_{j m} \delta_{k l}\right)
\end{aligned}
$$

Now since $n \geq 3$, for any i, we can choose j, k such that i, j, k are all different with each other. Choose $l=j, m=k$ and use second Bianchi Identity, we have

$$
0=\frac{\partial f}{\partial x^{i}}(1-0)+\frac{\partial f}{\partial x^{j}}(0-0)+\frac{\partial f}{\partial x^{k}}(0-0)=\frac{\partial f}{\partial x^{i}}
$$

So $\nabla f=0$ at p. Since p is arbitrary, we know f is a constant function.

[^0]2. A Riemannian manifold $\left(M^{n}, g\right)$ is called Einstein manifold if there exists a smooth function $\lambda: M \rightarrow \mathbb{R}$ such that $\operatorname{Ric}(X, Y)=\lambda\langle X, Y\rangle$ for any vector fields $X, Y \in \Gamma(T M)$.
(a) Suppose $\left(M^{n}, g\right)$ is a connected Einstein manifold with $n \geq 3$, show that λ must be a constant function.
(b) Suppose $\left(M^{3}, g\right)$ is a connected 3-dimensional Einstein manifold. Show that M has constant sectional curvature.

Solution:

(a) Let $\left(x_{1}, \cdots, x_{n}\right)$ to be a local coordinate with $e_{i}=\frac{\partial}{\partial x_{i}}$. We write $R\left(e_{i}, e_{j}, e_{k}, e_{l}\right)=$ $R_{i j k l}$ and $\operatorname{Ric}\left(e_{i}, e_{j}\right)=\operatorname{Ric}_{i j}$ for short. So our condition says $\operatorname{Ric}_{i j}=\lambda g_{i j}$. The second Bianchi identity can be written as

$$
\nabla_{e_{i}} R_{j k l m}+\nabla_{e_{j}} R_{k i l m}+\nabla_{e_{k}} R_{i j l m}=0
$$

We multiply $g^{j l}, g^{k m}$ to the both side of the above identity and take sum over j, l, k, m, and using coderivative of metric is 0 , we have

$$
\begin{aligned}
0 & =g^{j l} g^{k m} \nabla_{e_{i}} R_{j k l m}+g^{j l} g^{k m} \nabla_{e_{j}} R_{k i l m}+g^{j l} g^{k m} \nabla_{e_{k}} R_{i j l m} \\
& =\nabla_{e_{i}}\left(g^{j l} g^{k m} R_{j k l m}\right)+\nabla_{e_{j}}\left(g^{j l} g^{k m} R_{k i l m}\right)+\nabla_{e_{k}}\left(g^{j l} g^{k m} R_{i j l m}\right) \\
& =\nabla_{e_{i}}\left(g^{j l} \operatorname{Ric}_{j l}\right)+\nabla_{e_{j}}\left(-g^{j l} \operatorname{Ric}_{i l}\right)+\nabla_{e_{k}}\left(-g^{k m} \operatorname{Ric}_{i m}\right) \quad(\text { Definition of Ric }) \\
& =\nabla_{e_{i}}\left(g^{j l} g_{j l} \lambda\right)-\nabla_{e_{j}}\left(g^{j l} g_{i l} \lambda\right)-\nabla_{e_{k}}\left(g^{k m} g_{i m} \lambda\right) \quad\left(\operatorname{Ric}_{i j}=\lambda g_{i j}\right) \\
& =\nabla_{e_{i}}(n \lambda)-\nabla_{e_{j}}\left(\delta_{i}^{j} \lambda\right)-\nabla_{e_{k}}\left(\delta_{i}^{k} \lambda\right)=(n-2) \frac{\partial}{\partial x_{i}} \lambda
\end{aligned}
$$

where we've used Einstein summation convention.
Hence $\nabla \lambda \equiv 0$ on M. So λ is a constant function since M is connected.
(b) Let e_{1}, e_{2} be any orthogonal vectors at p. So the section curvature at the plane spanned by e_{1}, e_{2} is R_{1212}. Let's choose e_{3} to form a orthonormal basis of $T_{p} M$ with e_{1}, e_{2} and extend them to a local frame. Note that

$$
\begin{aligned}
& \operatorname{Ric}_{11}+\operatorname{Ric}_{22}-\operatorname{Ric}_{33} \\
= & R_{1212}+R_{1313}+R_{2121}+R_{2323}-R_{3131}-R_{3232} \\
= & 2 R_{1212}=K\left(e_{1}, e_{2}\right)
\end{aligned}
$$

Note that $\operatorname{Ric}_{i i}=\lambda\left\langle e_{i}, e_{i}\right\rangle=\lambda$, we have $K\left(e_{1}, e_{2}\right)=\lambda$ for any point p and any $e_{1}, e_{2} \in T_{p} M$, with e_{1}, e_{2} the normal orthogonal vectors at p.

So M has constant sectional curvature.
3. Let $f: M \rightarrow \mathbb{R}$ be a smooth function defined on a Riemannian manifold $\left(M^{n}, g\right)$. Denote $\Sigma:=f^{-1}(a)$ where a is a regular value of f. Show that the mean curvature H, with respect to the unit normal $N=-\frac{\nabla f}{|\nabla f|}$, of the hypersurface Σ is given by $H= \pm \operatorname{div} N$ (up to a sign depending on the sign convention in the definition of mean curvature). $\underline{\text { Solution: }}$

Given $p \in \Sigma$, choose a orthonormal basis $\left\{e_{1}, \cdots, e_{n-1}\right\}$ of $T_{p} \Sigma$ at p. So the vectors $\left\{e_{1}, \cdots, e_{n-1}, N\right\}$ will form a orthonormal basis of $T_{p} M$. The mean
curvature H of Σ with respect to N is defined as

$$
H=\sum_{i=1}^{n-1}\left\langle\nabla_{e_{i}} e_{i}, N\right\rangle
$$

where we've extend $\left\{e_{i}\right\}$ to any local frame of Σ and $\nabla_{X} Y$ denote the coderivative on M. Since $\left\langle e_{i}, N\right\rangle \equiv 0$ on Σ, we have

$$
H=\sum_{i=1}^{n-1} e_{i}\left\langle e_{i}, N\right\rangle-\sum_{i=1}^{n-1}\left\langle e_{i}, \nabla_{e_{i}} N\right\rangle=-\sum_{i=1}^{n-1}\left\langle e_{i}, \nabla_{e_{i}} N\right\rangle
$$

Note that $\langle N, N\rangle=1$ all the time. So

$$
0=N\langle N, N\rangle=2\left\langle N, \nabla_{N} N\right\rangle
$$

Hence

$$
H=-\sum_{i=1}^{n-1}\left\langle\nabla_{e_{i}} e_{i}, N\right\rangle-\left\langle\nabla_{N} N, N\right\rangle=-\operatorname{div} N=\operatorname{div} \frac{\nabla f}{|\nabla f|}
$$

(There might be a sign difference based on how to define the mean curvature and how to choose the normal.)
4. Consider the smooth map $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{4}$ defined by

$$
F(u, v)=(\cos u, \sin u, \cos v, \sin v)
$$

(a) Show that F is an isometric immersion (with respect to the flat metrics).
(b) Prove that the image of F lies inside the round 3-sphere $\mathbb{S}^{3}:=\left\{\left.x \in \mathbb{R}^{4}| | x\right|^{2}=2\right\}$, and $\Sigma=F\left(\mathbb{R}^{2}\right)$ is a minimal immersion into \mathbb{S}^{3}, equipped with the induced metric from \mathbb{R}^{4}.

Solution:

(a) We note the following identity

$$
\begin{aligned}
F_{*}\left(\frac{\partial}{\partial u}\right) & =\frac{\partial F}{\partial u}=(-\sin u, \cos u, 0,0) \\
F_{*}\left(\frac{\partial}{\partial v}\right) & =\frac{\partial F}{\partial v}=(0,0,-\sin v, \cos v)
\end{aligned}
$$

So

$$
\begin{aligned}
&\left\langle F_{*}\left(\frac{\partial}{\partial u}\right), F_{*}\left(\frac{\partial}{\partial u}\right)\right\rangle_{\mathbb{R}^{4}}=1=\left\langle\frac{\partial}{\partial u}, \frac{\partial}{\partial u}\right\rangle_{\mathbb{R}^{2}} \\
&\left\langle F_{*}\left(\frac{\partial}{\partial u}\right), F_{*}\left(\frac{\partial}{\partial v}\right)\right\rangle_{\mathbb{R}^{4}}=0=\left\langle\frac{\partial}{\partial u}, \frac{\partial}{\partial v}\right\rangle_{\mathbb{R}^{2}} \\
&\left\langle F_{*}\left(\frac{\partial}{\partial v}\right), F_{*}\left(\frac{\partial}{\partial v}\right)\right\rangle_{\mathbb{R}^{4}}=1=\left\langle\frac{\partial}{\partial v}, \frac{\partial}{\partial v}\right\rangle_{\mathbb{R}^{2}}
\end{aligned}
$$

Hence F is an isometric immersion.
(b) Note that $|F|^{2}=\cos ^{2} u+\sin ^{2} u+\cos ^{2} v+\sin ^{2} v=2$. So image of F lies inside \mathbb{S}^{3}.

Let N be a unit normal vector field along $F\left(\mathbb{R}^{2}\right)$ in \mathbb{S}^{3}. We use $\bar{\nabla}_{X} Y$ to denote the coderivative on \mathbb{R}^{4} and $\nabla_{X} Y$ denote the coderivative on \mathbb{S}^{3}.

So the mean curvature can be calculate by following

$$
\begin{aligned}
H & =\left\langle\nabla_{\frac{\partial}{\partial u}} \frac{\partial}{\partial u}, N\right\rangle+\left\langle\nabla_{\frac{\partial}{\partial v}} \frac{\partial}{\partial v}, N\right\rangle \\
& =\left\langle\bar{\nabla}_{\frac{\partial}{\partial u}} \frac{\partial}{\partial u}, N\right\rangle+\left\langle\bar{\nabla}_{\frac{\partial}{\partial v}} \frac{\partial}{\partial v}, N\right\rangle \quad\left(\text { since } N \in T \mathbb{S}^{3}\right) \\
& =\left\langle\frac{\partial^{2} F}{\partial u^{2}}, N\right\rangle+\left\langle\frac{\partial^{2} F}{\partial v^{2}}, N\right\rangle \\
& =\langle(-\cos u,-\sin u, 0,0)+(0,0,-\cos v,-\sin v), N\rangle=-\langle F(u, v), N\rangle \\
& =0 \quad\left(\text { since } N \perp F \in \mathbb{R}^{4}\right)
\end{aligned}
$$

So Σ is a minimal immersion into \mathbb{S}^{3}.

[^0]: ${ }^{1}$ Last revised on March 10, 2024

